山西三处先秦遗址出土绿松石制品 产源特征探索^{*}

李延祥(北]	京科技大学	科技史与	文化遗产研	肝究院	教	授)
张登毅(北]	京联合大学	学应用文理	学院历史文	ζ博系	讲	师)
何 驽(中	国社会	科 学 院	考古研	究 所	研究	员)
郭智勇(山	西	博	物	院	研究馆	官员)
郭银堂(忻	州市	文 物	管理	. 处	研究馆	官员)

绿松石从新石器时代中期就被人们垂青, 在人类装饰品历史上有着举足轻重的地位。本 文以山西省襄汾陶寺、临汾下靳、定襄中霍三 处遗址选取的 22 件绿松石制品为研究对象, 通过对其铅锶同位素组成、物相结构等检测分

图一 陶寺遗址 M2023 出土镶嵌绿松石骨笄 (图片摘自古方《中国玉器全集·3》,第40页,科学出版 社,2005年)

析,以期解读其背后隐藏的产源特征信号,探 索早期山西先民在不同时间、不同地点获取绿 松石资源的方式。

一 样品特征和测试方法

襄汾陶寺遗址位于山西临汾市襄汾县城 东北,为龙山时期一处大规模的王权所在地^[1]。 有学者指出,襄汾陶寺遗址为"尧都平阳"所 在,为中国最早的国家社会^[2]。该遗址自发掘以 来,出土了诸如镶嵌绿松石骨笄(图一)等大量 绿松石器物,器形有绿松石管、绿松石片,使用 方法多见镶嵌、单独串饰等。朱乃诚根据陶寺 文化中出土较多的绿松石片镶嵌、贴附装饰工 艺和绿松石珠状饰件,推测陶寺文化盛行腕部 装饰的社会风气^[3]。取自襄汾陶寺遗址的绿松

^{*} 本研究得到国家自然科学基金"陕西省洛南县辣子洞绿松石采矿遗址综合研究"项目(编号:51374030)及山西省留学回 国人员科研资助项目"山西科技文化遗产保护与开发"(编号:2014-001)资助;本研究为山西省忻州市文物管理处研究性 课题"山西忻州考古出土彩色宝石文物科学分析"及北京联合大学教研项目"中国古代冶金与文物"阶段性成果。

石样品共8件(图三)。其中TS-1、2、3、4、5、6 六件样品来自M3168,该墓级别为中型墓,年 代为陶寺早期。TS-8来自M22,该墓级别为王 墓,年代为陶寺中期。TS-9出土于H30,年代为 陶寺中期。

山西临汾下靳墓地位于山西临汾市西南 10公里处,东南距陶寺遗址约25公里^[4]。该墓 地前后两次发掘共清理墓葬533座,其中6座 墓葬出土绿松石制品(图二),这6座墓葬的整 体面貌与陶寺遗址早期中小型墓基本相同, 年代当与陶寺遗址早期墓葬相当,属临汾盆 地庙底沟二期文化的晚期阶段,绝对年代距今 约4500年。取自该遗址的绿松石样品共7件 (图四)。其中XJ-1来自M136,XJ-2、3来自 M28,XJ-4、5、6、7来自M30。

定襄中霍墓地位于山西忻州市定襄县西南9公里处,为一处春秋晚期以夫妻异穴合葬 墓为主的墓地^[5]。其中被鉴定为女性墓葬的 M2 出土绿松石制品 1098 枚,其形制可分为两类: 一为柱状、球状的绿松石管、珠,中间穿孔,用

图二 临汾下靳 M136 出土镶嵌绿松石腕饰 (图片由山西省博物院郭智勇提供)

图四 临汾下靳墓地部分绿松石样品 1. 出自 M136 2、3. 出自 M28

以穿系;二为椭圆形绿松石片饰,两边穿孔,中 间有凹槽[®]。取自该墓地的绿松石样品共7件 (图五)。其中 ZH-1、2、3、4为第一种类型,ZH-5、6、7为第二种类型。

本研究中首先使用拉曼光谱仪对所取样 品进行物相检测,以确定样品是否为绿松石; 然后用 TIMS 对样品的铅、锶同位素比值进行 检测,以解读样品的产源特征。

拉曼光谱检测在中国文化遗产研究院激 光拉曼光谱实验室完成,仪器为法国 JY 公司 生产的 Horiba 型显微拉曼光谱仪,配备 Olympus 显微镜,激光器波长为 638nm,激光能量约 为 12.5mw,曝光时间为 30s,扫描次数为 30 次, 扫描范围 4000~100cm。

铅、锶同位素检测在核工业北京地质 研究院分析测试研究中心完成,仪器为英 国 GV 公司(原 Micro-Mass 公司)生产的 Isoprobe 热电离质谱仪。该设备配置 17 个 接收器,包括 9 个法拉第杯、1 个戴利检测 器、1 个电子倍增器和 7 个离子计数器,可

图三 襄汾陶寺遗址绿松石样品

图五 定襄中霍墓地绿松石样品 (均出自 M2)

表	王 王 王 如 道	遗址所取样	品形状及	单位:um		
编号	出土单位	所属文化/ 年代	形状	ĸ	宽	厚
TS – 1	襄汾陶寺 M3168		不规则形			3400
TS – 2	襄汾陶寺 M3168		近三角形	1420×1620	1360	4600
TS – 3	襄汾陶寺 M3168	庙底沟	不规则形	1286	9400	2000
TS – 4	襄汾陶寺 M3168	二期	近椭圆形	1010	9100	4900
TS – 5	襄汾陶寺 M3168		不规则形			4000
TS – 6	襄汾陶寺 M3168		长条形	1590	6400	1400
TS – 8	襄汾陶寺 M22	陶土文化	长条状	1280	6600	4120
TS – 9	襄汾陶寺 H30	阿寸又几	近椭圆形	8500	5900	2100
XJ – 1	临汾下靳 M136		椭圆形	1180	6700	2200
XJ – 2	临汾下靳 M28		长条状	1210	3900	1700
XJ – 3	临汾下靳 M28	亡应为	三角形	7500×7200	7500	2400
XJ – 4	临汾下靳 M30	一田田田	碎粒	3400	1800	1380
XJ – 5	临汾下靳 M30		碎粒	3500	2800	1400
XJ – 6	临汾下靳 M30		碎粒	3140	2200	1500
XJ – 7	临汾下靳 M30		碎粒	4000	3700	2360
ZH – 1	定襄中霍 M2		圆柱状	8240	4400 ~ 5200	1580
ZH – 2	定襄中霍 M2	_	球状	7100	5000 ~ 7000	1640
ZH – 3	定襄中霍 M2	春秋晚期	残	4700	3600	1900
ZH – 4	定襄中霍 M2		残	3600	4460	1100
ZH – 5	定襄中霍 M2		椭圆形	10200	6200	2660
ZH – 6	定襄中霍 M2		椭圆形	10800	6600	2600
ZH – 7	定襄中霍 M2		椭圆形	9600	3800(残)	1200

检测分析结果

(一) 拉曼光谱检测及 物相判断

对所取样品均作了拉曼 光谱检测、检测结果见表二 和图六、七。由表二可知,所取 样品的拉曼峰位于 3437cm⁻ 1,1038cm⁻¹,813cm⁻¹,642cm⁻ 1、415cm⁻¹、232cm⁻¹处;由图 六、七可知,样品的强峰位 于1038cm⁻¹ 附近。经过与标 准谱图 (在线矿物谱库 http://rruff.info/index.php) 对 比,所取样品的拉曼谱图与 绿松石矿[Turquoise,分子式 CuAl₆ (PO₄)4 (OH)₈5H₂O] 的 标准谱图一致。

根据 Ray L.Frost^[7](2006) 及陈全莉^[8](2009)等学者的 研究,4000~3400cm⁻¹范围内 出现的拉曼谱峰是绿松石 中羟基单元中的氢氧根拉 伸振动引起的;在3300~ 3000cm⁻¹范围内的峰值是绿 松石水单元中的氢氧根拉

以满足微量—超微量样品的高精度同位素 分析测试。

伸振动引起的;在1200~500cm⁻¹内产生的峰是 磷酸根基团振动所致,具体表现为:1159~

88

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

山上田島	++	$\nu(\mathrm{OH})$	ν(OH) ν ₃ (PO ₄) ν(H2O) 網缩振动 伸缩振动 伸缩振动		$\nu_4(PO_4)$	$\nu_2(\mathrm{PO}_4)$	(6.0)
	作中方	伸缩振动			弯曲振动	弯曲振动	v(CuO)
参考值(Ray L. Frost)	3800 ~ 3400	10661042	900 ~ 700	700 ~ 500	500 ~ 400	330235	
	TS – 1	3473	1040	813	642	415	230
	TS – 2	3474	1040	816	644	417	232
	TS – 3	3475	1041	814	643	417	232
襄汾陶寺	TS – 4	3474	1040	811	642	415	230
	TS – 5	3474	1041	813	642	417	232
	TS – 6	3474	1041	813	643	417	232
	TS – 8	3474	1040	817	642	418	232
临汾下靳	XJ – 1	3474	1038	812	641	416	229
	XJ – 2	3474	1041	811	645	419	232
	XJ – 3	3472	1041	811	643	418	232
	XJ - 4	3474	1038	811	644	419	228
	XJ – 5	3472	1041	812	643	418	231
	XJ - 6	3472	1037	818	646	416	
定襄中霍	ZH – 1	3475	1035	810	639	415	227
	ZH – 6	3474	1035	815	639	417	225

所取样品拉曼特征峰谱值

注:临汾下靳 XJ – 7,定襄中霍 ZH – 2、3、4、5、7 号样品由于风化较为严重,仅出现绿松石的拉曼主峰 1035。故其峰值不 在此表中列出。

976cm⁻¹ 范围附近为 $v_3(PO_4)$ 非对称伸缩振动,在 641~548cm⁻¹ 范围为 $v_4(PO_4)$ 非对称 弯曲振动,479~413cm⁻¹ 范围为 $v_2(PO_4)$ 对称弯曲振动。其中前一个峰值强度较高, 为绿松石的主峰,后两个振动的峰都相对 较小且强度低;330cm⁻¹、235cm⁻¹ 附近出现 的峰是绿松石中 ν (CuO)振动引起的。

表二

由以上检测及分析可知,所取样品均 为绿松石。

(二)TIMS 检测及 Pb 同位素分析

自然界中的铅存在四种稳定同位素, 它们是²⁰⁸Pb、²⁰⁷Pb、²⁰⁶Pb和²⁰⁴Pb。铅同位素的 组成在很大程度上反映了矿石成矿温度差 异、矿化阶段及成矿物质来源^[9]。因此其可 以作为矿石的"指纹"指征矿石产源。铅同 位素被广泛地应用在国内外考古领域,用于 指征早期青铜器及绿松石制品^[10]等的产源。

本次将所有样品均作了铅同位素组 分检测。检测结果见表三。

(三)TIMS 检测及 Sr 同位素分析

自然界中锶有四种稳定同位素,它们 是⁸⁴Sr、⁸⁶Sr、⁸⁷Sr和⁸⁸Sr。其中⁸⁷Sr是放射性同 位素⁸⁷Rb(半衰期约 470 亿年)的衰变产物,

表三 三处遗址绿松石铅同位素数据

样品号	²⁰⁷ Pb/ ²⁰⁶ Pb	$^{208}\mathrm{Pb}/^{206}\mathrm{Pb}$	²⁰⁶ Pb/ ²⁰⁴ Pb	$^{207}\mathrm{Pb}/^{204}\mathrm{Pb}$	$^{208}\mathrm{Pb}/^{204}\mathrm{Pb}$
TS – 1	0. 85713	2. 10123	18.31303	15. 69869	38. 48287
TS – 2	0. 75813	1.85664	20. 92679	15. 85984	38. 83543
TS – 3	0. 83701	2.05645	18. 64664	15. 60961	38. 34738
TS - 4	0. 83614	2.04915	18.67463	15.62054	38. 27737
TS – 5	0. 85970	2. 11215	18.00555	15.47932	38. 03050
TS – 6	0. 70469	1.73123	22.65882	15.96632	39. 27755
TS – 8	0.86097	2. 10925	18. 10910	15. 59169	38. 20085
TS – 9	0. 84799	2.09120	18. 30101	15. 54545	38. 32636
XJ – 1	0.83704	2. 04594	18. 37153	15.37757	37. 58718
XJ – 2	0. 79732	1.98951	19. 51906	15.56532	38. 82765
XJ – 3	0. 83154	2.05061	18.94752	15.75543	38.84908
XJ – 4	0. 86181	2. 11413	18.08400	15.58500	38. 23200
XJ – 5	0. 87913	2. 14329	17.65600	15.52200	37.84200
XJ – 6	0. 75171	1.90192	21.06400	15.83400	40.06200
XJ – 7	0. 78187	1. 95874	20. 13900	15.74600	39. 44700
ZH – 1	0. 82388	2.01363	19. 11612	15.75956	38. 51822
ZH – 2	0. 79539	1.94187	19.63268	15.61556	38. 12411
ZH – 3	0.80461	1.96882	19.42433	15.62907	38. 24322
ZH – 4	0. 85731	2. 09111	18. 15643	15.56612	37.96614
ZH – 5	0. 82786	2. 02319	18.87102	15.62246	38. 17943
ZH – 6	0. 85141	2.09966	18. 27965	15.56409	38. 38252
ZH – 7	0. 87691	2. 13805	17.71976	15. 53735	37.88232

因此地球上⁸⁷Sr的总量是随时间不断增加的。由 于不同的矿物和岩石成矿年代不同以及母岩的 铷、锶含量比不同,其锶同位素组成也是不同的。 矿物学上一般用⁸⁷Sr与⁸⁶Sr的比值作为物质锶同 位素组成的度量,对于大多数岩石和矿物,⁸⁷Sr⁶⁶Sr 比值高于 0.7,有的矿物可达 1.0 以上。因此锶与 铅相似,可以用于某些矿物文物的产地溯源。

本次将所有样品均作了锶同位素组分检 测,检测结果见表四。

三 讨 论

将山西三处遗址绿松石制品与五处绿松石矿 源样品^[11]以²⁰⁷Pb/²⁰⁴Pb、⁸⁷Sr /⁸⁶Sr 做散点图(图八)。

由图八可知,临汾下靳4、5、6、7号样品,襄 汾陶寺9号样品及定襄中霍2、5号样品落在竹

山喇嘛洞矿石样品的分布 范围内,临汾下靳2、3 号样 品及定襄中霍1、3、4、6 号 样品的分布范围之内,而落 在白河白龙洞的样品只有 这三处遗址剩余的绿松石 样品仍指向4处未知矿源。 样品指向3处未知矿源。 样品指句3定襄中霍分别指 向1处未知矿源(表五)。由 此看来,襄汾陶寺的绿松石

样品号	遗址	⁸⁷ Sr⁄ ⁸⁶ Sr
TS – 1	陶寺	0.73403
TS – 2	陶寺	0.73025
TS – 3	陶寺	0.71720
TS - 4	陶寺	0.72304
TS – 5	陶寺	0.71478
TS – 6	陶寺	0.73570
TS - 8	陶寺	0. 72165
TS – 9	陶寺	0.71077
XJ – 1	下靳	0.71121
XJ – 2	下靳	0.71270
XJ – 3	下靳	0.71127
XJ - 4	下靳	0.71011
XJ - 5	下靳	0.71022
XJ - 6	下靳	0.71027
XJ - 7	下靳	0.71020
ZH – 1	中霍	0.71130
ZH – 2	中霍	0. 70980
ZH – 3	中霍	0.71110
ZH – 4	中霍	0.71275
ZH – 5	中霍	0.70992
ZH - 6	中霍	0.71166
ZH – 7	中霍	0.71538

三处遗址绿松石锶同位素数据

矿源指向较为特殊。

表四

在已知的矿源之中,临汾下靳绿松石制品中 来源于竹山喇嘛洞的占据多数,来源于洛南辣子洞

表五 山西三处遗址绿松石样品矿源特征及考古背景对照表

产源特征 临汾下靳(7个样品)		襄汾陶寺(8个样品)		定襄中霍(7个样品)		
竹山	4 个	4(M30),5(M30),	1个	0(1120)	2个	2 (M2)、5
喇嘛洞	样品	6(M30),7(M30)	样品	9(1150)	样品	(M2)
洛南	2个	2 (M28)、3			4 个	$1(M2)_3(M2)_{$
辣子洞	样品	(M28)			样品	4(M2) (6(M2)
白河			1个	2 (M2169)		
白龙洞			样品	5(M5108)		
未知	1个	1 (M126)				
矿源1	样品	I (M150)				
未知			1个	5 (M2169)	1个	7(M2)
矿源2			样品	3 (M3108)	样品	7 (M2)
未知			2个	4 (M3168)、8		
矿源3			样品	(M22)		
未知			3个	1 (M3168), 2		
矿源4			样品	(M3168),6(M3168)		

90

的位居其次,不见来源于白河白龙洞的绿松石制 品。绿松石制品中,来源于竹山喇嘛洞和洛南辣子 洞的绿松石制品各占一半,襄汾陶寺的绝大部分 绿松石制品矿源未知。定襄中霍墓地多数绿松石 制品来源于洛南辣子洞,少量来源于竹山喇嘛洞。

四 结 语

通过对出土于襄汾陶寺遗址、临汾下靳墓地 及定襄中霍墓地的 22 件绿松石样品进行物相及 铅、锶同位素组成的检测,可以初步得出如下结论。

第一,铅、锶同位素比值对绿松石制品矿 源示踪结果显示:新石器时代晚期的临汾下靳 墓地绿松石制品至少有3处不同的矿源,目前 已知的矿源有竹山喇嘛洞和洛南辣子洞;新石 器时代晚期的襄汾陶寺遗址出土绿松石制品 矿源较为特殊,极少一部分有可能来源于竹山 喇嘛洞和白河白龙洞,绝大部分样品矿源未 知;春秋晚期的定襄中霍墓地绿松石制品至少 有3处不同的矿源,其中可能的两处矿源为竹 山喇嘛洞和洛南辣子洞地区。

第二,在已知的矿源中,临汾下靳绿松石 制品来源于竹山喇嘛洞的占多数,也有少部分 来源于洛南辣子洞,而陶寺遗址绿松石制品则 不见来源于洛南辣子洞的矿料,其大部分的矿 源未知。到了春秋晚期的定襄中霍墓地,来源于 洛南辣子洞和竹山喇嘛洞的占多数,表明这两 处矿源在先秦时期的山西地区使用较为频繁。

第三,陶寺出土绿松石制品矿源特征信号特 殊且多样化,表明陶寺遗址同一时期可能在不同 的矿源获取绿松石,这也说明陶寺遗址可能是一 处公元前两千纪前后物资交流的集散地,这一点 与陶寺遗址的等级是相符的。陶寺遗址绿松石制 品来源的多样化,彰显其在以绿松石制品为代表 的早期珍稀矿产资源交流中扮演的独特地位。

第四,在庙底沟二期的晋南,等级较低的下 靳遗址绿松石资源有可能来源于与陶寺遗址的 交换或者贸易,也有可能为其单独开采或者与陶 寺以外的其他遗址相互交流以获取绿松石资源。 绿松石资源的获取,下靳遗址并未受到陶寺遗址 的控制,由此观之,在社会复杂化的初级阶段,这 两个不同等级的遗址之间既有联系,又相互独立。

第五,本文的初步研究显示,洛南辣子洞、 竹山喇嘛洞的绿松石出现在下靳墓地,表明这 两处绿松石矿的开采年代可早至庙底沟二期。

第六,3 处遗址出现 4 处未知的矿源,尤其 是陶寺遗址的大多数样品矿源未知,预示着除 了已知的矿源外,还有多处绿松石矿在新石器 时代晚期得到开采。

- [1] 中国社会科学院考古研究所山西队等《陶寺城址发现陶寺文化中期墓葬》,《考古》2003年第9期;山西大学科学技术哲学研究中心等《陶寺中期墓地被盗墓葬抢救性发掘纪要》,《中原文物》2006年第5期。
- [2] 何驽《尧都何在?——陶寺城址发现的考古指证》, 《史志学刊》2015 年第 2 期。
- [3] 朱乃诚《中原地区两批距今 4000 年前后的王室 玉器及有关问题》,《中华之源与嵩山文明研究》, 科学出版社,2015 年。
- [4] 下靳考古队《山西临汾下靳墓地发掘简报》,《文物》 1998 年第 12 期;梁星彭等《山西临汾下靳村陶寺 文化墓地发掘报告》,《考古学报》1999 年第 4 期。
- [5] 李有成《定襄县中霍村东周墓发掘报告》,《文物》 1997 年第 5 期;郭银堂、李培林《定襄中霍村出土 的一批青铜器》,《文物》2004 年第 12 期。
- [6] 张登毅、李延祥《山西出土先秦绿松石制品初步研究》,《华夏考古》2015年第4期。
- [7] Frost Ray L, Reddy B Jagannadha, Martens Wayde N, et al. Journal of Molecular Structure, 2006, 788:224.
- [8] 陈全莉《绿松石的激光拉曼光谱研究》,《光谱学 与光谱分析》2009 年第 2 期。
- [9] 地质部宜昌地质矿产研究所同位素地质研究室《铅 同位素地质研究的基本问题》,第41~49页,地质出版社,1979年;金正耀《中国铅同位素考古》,第3~17页,中国科学技术大学出版社,2008年。
- [10] Alyson M. Thibodeau, Joaquin Ruiz, John T. Chesley. Lead and Strontium Isotopes as Tracers of Turquoise [J]. SAS Bulletin, 2007 (Summer): 10– 13; Alyson M. Thibodeau. Isotopic evidence for the provenance of turquoise, mineral paints, and metals in the southwestern United States [D]. PH.D dissertations. The University of Arizona, 2012.
- [11] 先怡衡《陕西洛南辣子洞采矿遗址及周边绿松 石产源特征研究》,北京科技大学博士学位论 文,2016年。

(责任编辑:杨冠华)