采用轮毂电机最大的好处是,动力输出至轮边直接转换为动能驱动整车前行,省去了变速器、分动器、传动轴甚至H型转向拉杆总成等部件。而不足之处则是对轮毂电机的自重不能过大,电机转子和定子的工作效率有着严格要求,最重要的是轮毂电机的散热与红外信号特征的抑制必须符合军用标准。目前各大车厂(包括国内万向和比亚迪)均可以制造民用轮毂电机,但是在推进比(自重与功率)以及散热方案上或多或少存在着不足。要么通过外置散热鳍片提升自重换取可靠性,要么通过外置水冷散热系统降低自重提升推进效率,但无论哪种方案都存在着不足。进而影响轮毂电机军用化是热辐射信号过高,导致整车隐蔽性能不能满足军方标准。日军6轮混动105突击炮的轮毂电机,通过采用轻量化的外壳,电机加装外置鳍片与超导散热相结合的冷却系统并涂抹复合涂层,最终使得轮毂电机在自身重量、轮边功效、散热系统的可靠性与整车辐射抑制能力上满足日军的要求。最终整套系统在标准配置下(搭载低后座105突击炮,4人战斗小组,标准32发弹药基数)可以混动状态行驶超840公里,纯电状态综合续航里程超50公里。对于自重15吨的装甲突击兵器来说,这个行驶里程标准放在各国陆军兵器中都是超然领先的。 采用全新研发的超低后座105毫米口径反坦克炮,这对日军是一个全新的考验。为什么说是考验?在综合考量这套6轮混动载具不超过15吨前提下,搭载105毫米反坦克炮,这就意味着在3点钟、9点钟方向射击时,车体会被强大的火炮后座力掀翻。载具的混动系统性能和尺寸被严格的限定,那么就要在火炮的自身上寻求突破。最终这具“双后座”105毫米口径反坦克炮,为了降低缓冲后座力对车身的冲击,增加了大约50只零件后,拥有了可以水平以及垂直(确切的说拥有跟随火炮发射仰角相同)方向的两段式后座缓冲装置。采用小尺寸的无人炮塔结构,减重效果是明显的,但随之而来的是装弹机的布置,以及低后座105跑的弹药势必也要重新开发。 资料图:日本10式主战坦克 现在,日本陆军90式以及10式坦克使用的120毫米口径坦克炮,在根源上来自德国莱茵钢铁公司为德军豹式系列坦克匹配Rh120-L44型120毫米口径滑膛炮以及配属弹药。在日军90式坦克炮国产化的过程并不顺利,最终还是以莱茵钢铁授权的方式进行了国产化生产。2013年日军自行研发的8轮重型坦克战车搭载的105毫米口径反坦克炮,在某些工艺上仍然来自莱茵钢铁。由此推断,这台经过“双后座”改进且匹配自行装弹机的反坦克炮仍然“流淌着汉斯的体液”。 日军对这款6轮混动105突击炮采用模块化的研发模式。在首先制定好计划书后,各分包商在责任内根据研发手册对火炮、车身、动力、驱动等分系统进行同步研发。在研发完毕由小松制作所合装。虽然模块化的研发模式已经不再有太大难度,但是对于一款采用多项全新技术的军用车辆,油电混合的动力总成、轮毂电机这种颠覆传统的驱动系统,势必对整车布局起到了至关重要的影响。省去了变速器、分动器、传动轴以及大量的拉杆的空间,可以提升整车空间利用率,但是在车重配比上,很少有借鉴以往经验可用。每套分系统预先设定的技术指标,既要与以往有所突破,又要在日本各企业技术积累范围内,在生产上还要严格恪守技术手册规定的各项体积上的参数。从整套武器研发与生产模式看,日本的汽车、机械、光学、电子、重工业等跨行业协作能力已经走在世界最前端。 (责任编辑:admin) |